CFD Post processing of Industrial Gas Turbine Exhaust Diffuser and Optimization of 1D Analysis Tool

SIEMENS

Introduction

This project initiates the development of a catalogue system to summarize performances of industrial gas turbine exhaust diffusers. The catalogue can be used to improve geometrical shape and performance predictions of designs developed in a diffuser meanline tool. The present development effort focuses on a diffuser model of ITSM test rig

Diffuser Catalogue

Geometry

- Longitudinal views of CAD model (cold geometry)
- 2D views of CFD model (hot geometry)
- Area plots : Area vs. x, AR vs. x/L

Aerodynamics

- Radial plots: Inlet P_t, T_t, Mach#, swirl, pitch, V_{axial}, V_{tan}, and V_{rad}
- Struts: 2D profiles, pressure coef vs. chord @ hub, mid-span, and casing

 Circumferential averaging to determine inlet profiles Normalized inlet profiles and diffuser performance data

Leolein P. Moualeu University of North Dakota

Performance

• Area vs. x/L (with strut blockage)

• Dimensionless plots: C_p, total loss, kinetic energy coef., P, and P_t

- Diffuser meanline tool evaluate the performance and validate the design for further CFD and experimental analyses
- 1D tool is composed of:
 - Input of inlet boundary conditions
 - Geometry inputs
 - Sections of segmented diffuser

 - Correlations for drag predictions on struts -Results

Diffuser computation

- 4 computing regions : annular, strut, hub-end, and conical
- Incompressible and steady flow
- Inlet conditions obtained from CFD
- Implemented drags:
 - Skin-friction drag (Prandtl-Schlichting)

 - Incremental (pitched struts), interference, and profile drags - Base drag in hub-end region

Results

- - Boundary layer blockage not computed - Locations for diffuser partitioning are influential

Future work

1D Analysis Tool

• 1D tool predictions compared to CFD results:

• 1D tool cross sectional area calculations are comparable to CFD • Performance over-predicted in annular, strut, and hub-end regions - Drag correlations based on NACA struts

